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1 Introduction

Learning low-dimensional structures from high-dimensional data, as discussed by

Li, Del Castillo, and Runger, is an important area of research with numerous

application opportunities. This paper presents an interesting idea of combining

Gaussian process classification (GPC) with manifold and active learning. Gaussian

processes are strong tools for active learning as they can quantify the model

uncertainty of unlabeled samples, while considering the spatial information of input

data. However, regular GP models and their kernels are not able to model the

manifold on which the data lie. In order to address this issue, the authors take the

well-known graph representation of manifolds and define a new kernel by using the

graph’s Laplacian matrix that captures the manifold structure. Defining such a

manifold-based kernel is an important contribution because with this kernel directly

inherits all the strengths of the GP models and can be effectively employed for

tackling the active learning problem on manifolds.

The proposed approach has broad applications in manufacturing and service

systems, biology and genetics, medicine, marketing, internet retails, and so forth. In

most applications, the data are adequate, but the labeled data may be quite limited

due to the expensive labeling process in different systems. For example, in medical

imaging for cancer diagnostics, clinicians need to label each image as benign and

malicious, which is a very time-consuming process (Smailagic et al. 2018).
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In what follows, we first present two real examples of such applications in

manufacturing systems. Next, we discuss potential research directions that could

help improve the proposed methodology and broaden its applicability. Finally,

concluding remarks are presented.

2 Application examples in manufacturing systems

In modern vehicle engines, the engine control unit (ECU) ensures the functionality

of the vehicle and diagnoses failure for a number of components. The ECU

implements surrogate models of complex physical dynamical systems that are

constructed based on a large number of tests performed at different levels of engine

torque and speed. The combinations of the torque and speed that produce

acceptable (unacceptable) engine performance may lie on a manifold rather than

distributed fully on R2. Therefore, taking the manifold structure of the data to create

a classification model that identifies acceptable and unacceptable pairs of torque and

speed is essential. Furthermore, to reduce the cost of performing experiments an

active learning approach that identifies the next point to be tested is critical in

defining an accurate classification model while minimizing the number of

experiments (Gahrooei et al. 2019). The proposed approach in this paper provides

a strong solution to achieve this goal.

Another potential application of the proposed GCP is in quality inspection of

complex structured parts. For example, in metrology, touch-probe coordinate

measuring machines used for measuring the dimensional accuracy (Mesnil et al.

2014), and in non-destructive evaluation, guided wave-field tests and laser

ultrasonics are widely utilized for defect detection in composite sheets (Simpson

1992). These inspection systems are only capable of measuring one point at a time,

resulting in a time-consuming procedure not scalable to online inspection of

complex parts. However, since defects are often clustered, one can use a sequential

sampling and active learning strategy such as the proposed GPC to reduce the

number of inspected points and, consequently, reduce the inspection time. This

approach may help identify the location and shape of the defects without having to

inspect every single point on the part.

3 Research directions

In this section, we discuss the some of the assumptions and limitations of the

proposed methodology and suggest some research directions for addressing them.

Since the proposed method uses Gaussian process (GP) classification, it has the

weaknesses of the GP as well. Specifically, the approach is particularly advertised to

be useful in high-dimensional settings in which GP models are particularly

computationally expensive. It is known that when d[ 10 or the sample size n is

large (more than a few thousands), fitting a GP would be extremely time-

consuming. Considering the fact that in an active learning procedure, the GP model

should be updated as new samples are being labeled, the whole framework seems to
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be intensely time demanding. This suggests several lines of research to be pursued:

(1) investigating the viability of existing techniques for improving the time

complexity of GP models with graph-based kernels. In recent years, several

techniques have been introduced to address the challenge of time complexity in GP

models. Examples of these approaches are LaGP, DICE, and sparse Gaussian

process (Gramacy 2016; Roustant et al. 2012; Snelson and Ghahramani 2006).

Nevertheless, almost all these approaches focus on the large sample size problem

rather than high-dimensionality (large d) problem. (2) Developing sequential and

recursive estimation of the GP model parameters that does not require retraining of

the GP model for entire data at each epoch of the active learning procedure.

Although GP models are suitable for active learning as they quantify the model

uncertainty at unobserved points, retraining these models at each step of active

learning can make them intractable due to their large computation time. Therefore,

employing GP models for active learning in high-dimensional settings may not be

appealing unless a recursive and fast scheme for updating the GP parameters is

devised. (3) Utilizing the manifold structure of the data to reduce the computation

effort and time of the parameter estimation. The GP model developed in the paper is

defined on a graph constructed by manifold learning, which typically has sparse

connections. In the literature, to fit GP models on spatial data, the entire space is

divided into several non-overlapping regions and a local GP for each region is fitted,

while enforcing the boundary consistency between regions. Similar techniques can

be applied to the graph-based GP, where community detection can be used to divide

the space into clusters and fit GP for each local cluster, while considering the global

continuity.

Another point that is not addressed in the paper is that how the choice of the base

kernel influences the performance of the proposed approach in terms of capturing

the manifold structure. The proposed kernel indeed fully depends on the base kernel,

and hence, its ability in capturing the manifold structure may vary from one base

kernel to another. However, kernel selection is a data-specific problem. In the GP

literature, there is some research discussing the selection of hyper parameters and

also even deciding the functional forms of kernel, which can be further studied.

Another challenge is with regard to the generation of graphs to represent the

manifold in a high-dimensional space. The graph representation of a manifold is

usually defined by connecting the points that are within e distance of each other (i.e.,
an edge will be placed between two points if their Euclidian distance is less than e in
the ambient space). In lower dimensions (e.g., d ¼ 2 or 3), this approach is

reasonable with small to medium number of data points. However, in higher

dimensions, one may require a large number of data points to be able to create such

a graph as most points fall far from each other. Therefore, the created graph will be

extremely sparse and may not be a proper representative of the underlying manifold.

As a result, employing manifold learning techniques may not be straightforward in

high-dimensional settings.

Finally, we discuss the use of the deep learning model as an alternative model for

manifold learning. Deep learning has shown great success in supervised learning in

image recognition and natural language processing (Deng et al. 2009). Recently,

deep learning models have been developed in the semi-supervised learning settings
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in conjunction with active learning and it has shown promising results (Gal et al.

2017) with entropy-based techniques. The benefit of deep learning approaches is

that unlike the graph-based manifold learning that uses Euclidian distance, they do

not require a definition of a distance measure. Deep learning methods also map the

high-dimensional data into the low-dimensional feature space. Nevertheless, both

approaches will require a large number of data points for training a mapping

function from the original space to the manifold where the data lie. The flexibility of

neural network architecture such as convolutional and recurrent structure makes it

more powerful when the number of data increases.

4 Concluding remarks

Li, Del Castillo, and Runger’s paper is an exciting contribution to the literature of

high-dimensional data analysis. The authors are congratulated for developing such

an interesting framework integrating manifold learning, GP classification, and

active learning. In addition to the potential manufacturing applications discussed in

Sect. 2, there are various other scenarios where sampling is costly and/or time-

consuming, hence requiring an active learning and sequential sampling on

manifolds. As mentioned in Sect. 3, this research opens the door to a broad range

of research problems and challenges that require methodological development as

well as theoretical study.
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