

Task 3: Human Systems Integration

Co-Is: Nancy Cooke, PhD, Mary Niemczyk, PhD Pingbo Tang, Ph.D. Students: Jiawei Chen, Chris Lieber, Sarah Ligda, Zhe Sun, Yanyu Wang Post Doc: Mustafa Demir

Communication as an Index of Collaboration

- An observable byproduct of collaboration; Think aloud "in the wild"
- Rich, multidimensional (pitch, amount, flow, speech acts, content)
- Reflects team cognition in terms of interactions; for us this is team cognition
- Allows operational assessment of collaboration...
- We anticipate communication data (radio or data comm) being available for real-time monitoring and analysis

ATC Simulation Experiment Measures

ATC Simulator Experiment

3 Pseudo Pilots

- 2 of 12 experienced FAA controllers
- Three pseudo pilots (students) each controlling 4-8 planes
- Three 25 min simulated approach scenarios (within Ss fixed factor):
 - Baseline: 4-5 aircraft at once, moderate workload (15 aircraft)
 - High Workload Nominal: 2 aircraft, increases to 10-12 at once (30 aircraft total)
 - High Workload Off Nominal: Traffic density same as High Workload – Nominal plus…
 - Pilot deviation
 - Runway switch (runway 25L to 07R)
 - Moderate turbulence in several arrival flows

Single Air Traffic Controller

ATC Simulation Experiment

CRITERION MEASURES

ATC performance – Loss of Separation
 PREDICTORS

- Controller-Pilot radio frequency transmissions
 - Volume how much communication over time
 - Flow who talks to whom patterns over time
 - Errors violated standard flow pattern
- Workload & Situation Awareness probes
- Biometric heart rate variability
- Facial expression
 - Affectiva software labeling
 - Pingbo Tang's research

PHX TRACON (P50) on ATCo radar scope 3 ATC radar simulation scenarios, 25 min each

1 RNAV and 3 STARS arrival routes GA SSBST (G Arrivals from Mexico, etc rrivals from GA KLAX, KSFO (SAN, KONT, etc ŝ

3

Workload & Situation Awareness

LOS Events Per Minute over Two ATC Participants Increase Over Time and in High Workload Scenarios

Over Three Times as Many Separation Breaches in High Workload Nominal as Baseline

Subjective and Objective Workload Increase Over Time

Workload Probe at 3 min	Workload Probe at 12 min	Workload Probe at 21 min
2.25 sec to press "Ready"1.6 workload rating1 low – 7 high(6 data points)	21.45 sec to press "Ready"6.0 workload rating1 low – 7 high(6 data points)	11.85 sec to press "Ready"6.5 workload rating(1 low – 7 high)(6 data points)

COMMUNICATION ANALYSIS

Baseline

High WL

Cooke, N. J., Salas, E., Kiekel, P. A., & Bell, B. (2004). Advances in measuring team cognition. *Team cognition: Understanding the factors that drive process and performance*, 83-106. Kiekel, P. A., Gorman, J. C., & Cooke, N. J. (2017). Communication as team-level cognitive processing. In *Macrocognition in teams* (pp. 51-64). CRC Press.

Gorman, J. C., Foltz, P. W., Kiekel, P. A., Martin, M. J., & Cooke, N. J. (2003, October). Evaluation of Latent Semantic Analysis-based measures of team communications content. In *Proceedings of the Human Factors and Ergonomics Society annual meeting* (Vol. 47, No. 3, pp. 424-428). Sage CA: Los Angeles, CA: SAGE Publications.

COMMUNICATION ANALYSIS Closed Loop Communication

Coded as "0": if an air traffic controllers communication followed a pilots or vice versa (A>P>A>P>A>P)

Coded as "1": if an air traffic controller communications was followed by another air traffic controller communication, or a pilot communication was followed immediately by another pilot communication. (A>P>A>P>P)

ATC/ Pilot	Time	Description	Deviation	Code
ATC (JetBlue 475)	01:50.0	JetBlue four seventy five desceding maintain six thousand	Not deviated	0
JetBlue 475	01:54.0	six throusand jetblue four seventy five	Deviation	0
American 912	01:57.7	Phx appraoch, this is american nine twelve with you on header one information tango	happened	1
ATC (American 912)	02:05.5	american nine twelve expect ILS? Runway two five left appraoch	Not Deviated	0
American 912	02:09.6	roger expect ILS? Runway two five left appraoch american nine twelve		0
Boutigue 805	03:14.3	Phoenix appraoch this is boutigue eight o five, we are with you at wide five we are at ten thousand we have information tango	Deviation happened	1
ATC (Boutigue 805)	03:24.1	boutigue eight o five phx appaoch roger expect ILS? Runway two five left appraoch	Not deviated	0

COMMUNICATION ANALYSIS Pattern Change Variants (Deviations)

Communication Skip:

- 1) Pilot A:ATC
- 2) ATC: Pilot B

Step Over

- 1) Pilot A: ATC
 - a) Halfway through communication Pilot B calls in
- 2) Pilot B: ATC

Normal Pattern Change:

- Pilot A:ATC Communication is complete
- 2) ATC: Pilot B

Error Correction

- 1) ATC:Pilot
 - a) ATC makes error
- 2) ATC:Pilot
 - a) Gives corrected order

Results of Coding Data for Closed Loop Communication Deviations

Trial	Participant	Deviations
Base	1	9
Base	2	17
Nominal	1	29
Nominal	2	34
Off Nom	1	31
Off Nom	2	36

In the high workload off-nominal conditions, most of the communication deviations happened during the unexpected events (e.g., turbulence)

COMMUNICATION ANALYSIS Recurrence Quantification Analysis (RQA)

Identify recurrent patterns in behavioral sequences

- Recurrence Rate (RR): Quantify the overall tendency for recurrence in the systems (i.e. recurrence density)
- RR is an index of predictability of the closed loop-no closed loop pattern over time
- RQA can be done in real time and can provide indications of risk

		3.3
	· · · · · · · · · · · · · · · · · · ·	
		00
		110
	· · · · · · · · · · · · · · · · · · ·	• •
	· · · · · · · · · · · · · · · · · · ·	* 00 * 00
		100
		100
		000
		100
		1 4 0
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		Ť
	· · · · · · · · · · · · · · · · · · ·	0.0
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0 0
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	n ann a' anaich a' than 1 Teannacht Thirthean	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		
10 TH 1 T 1 TH 1 TH 1 TH 1 TH 1 TH 1 TH	······································	
	· · · · · · · · · · · · · · · · · · ·	0 0
** ** * * * ** ** ** ** *******		
	* * * * * * * * * * * * * * * * * * * *	
· · · · · · · · · · · · · · · · · · ·	in na kili i ta ana kana kana kana kana kana kana ka	
		00
	· · · · · · · · · · · · · · · · · · ·	• • •
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0
	* * • • • • • • • • • • • • • • • • • •	-
· · · · · · · · · · · · · · · · · · ·	°, * * ****************************	
	· · · · · · · · · · · · · · · · · · ·	• •
· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
		00
0 0 F 0 0 000 FF 0 0 00 0 FF 0 000 0 FF 0 000F00		
◆ Lotate Lotate Andrea State State State State		

COMMUNICATION ANALYSIS Predictability Decreases and Closed Loop Communication Deviations Increase with Increased Workload

ATC #1

High Nominal

High-Off Nominal

 $\mathbf{RR} = \mathbf{0.58}$

RR= 0.85

 $\mathbf{RR} = \mathbf{0.65}$

COMMUNICATION ANALYSIS Predictability Decreases and Closed Loop Communication Deviations Increase with Increased Workload

Baseline

ATC #2

High Nominal

High-Off Nominal

RR= 0.85

RR= 0.62

100

150

Communication sequence

COMMUNICATION ANALYSIS Closed Loop Communications Less Predictable with Workload Increases

HEART RATE RESULTS Sample Entropy

- Sample Entropy quantifies information generated in time series (Interbeat Interval ~ time interval between the individual beats)
- Low Sample Entropy: Low information generation; greater regularity/ predictability of data, less complex pattern of variability
- High Sample Entropy: High information generation; more complex, less predictable pattern of variability

RESULTS: Sample Entropy

CONCLUSIONS

Data represent a preliminary look at 2 of 12 participants

Scenarios are generating LOS events

- High workload more LOS than Baseline
- 3x as many in high WL-nominal than baseline
- ¹/₄ breaches in off-nominal are <1nm</p>
- Both high workload scenarios have breaches lasting >5 min
- Workload also increases over time in each scenario
- What behavioral measures are predictive of workload and LOS?

CONCLUSIONS

With increases in workload...

- Closed loop communication deviations increase
- Closed loop communication deviations become less predictable
- Heart rate variability becomes more predictable

Schedule and Milestones

