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Introduction

Need access to real-time data that provides information on 
problematic human states that may lead to operational 
error
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Motivation
Changes in the Air traffic controller state may correspond to changes in 
communication patterns which can signal potential operational errors/risk.

Electroencephalography (EEG)
• Intrusive
• Not real-time
• Not practical

Computer vision
• Easy to implement
• Real-time

O. Arriaga, P. G. Plöger, and M. Valdenegro, “Real-time Convolutional Neural Networks for Emotion and Gender 

Classification.”
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Motivation
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• For every air traffic controller, we trained neural network to learn their individual behavior pattern.
• Based on the behavior pattern in the past few seconds, we predict their behaviors in the coming 

seconds. If the prediction is different from the ground truth captured by algorithm, then we 
consider the behavior as an anomaly.
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Methodology

• Real-time Monitoring
• Less intrusive than biometric sensors

• Facial Expression
• Head Gesture
• Eye Blink

Multivariate 

time series 

data

Long-short term 
memory (LSTM) for 

anomaly detection of 
abnormal behaviors

camera

Real-time video

• LSTM is one type of recurrent neural network models and can be used for 
time series analysis. 

• Use video data collected during the simulator experiments for capturing face 
changes of air traffic controllers

• Two subjects participating the experiments were retired air traffic controllers
• Biometric and communication data were collected to validate the anomaly 

detection results. 7



Data processing pipeline
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Facial expression recognition

Deep Networks
Output
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Head pose estimation

Input Image Face Detection
Facial Landmark 

Detection
Pose Estimation

Yaw

Pitch
Roll

The 68 facial landmarks
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Eye Blink Extraction
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EAR: eye aspect ratio
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Experiment

▪ 2 of 12 Experienced (retired) ATCs

▪ Three pseudo pilots (students) each controlling 4-8 

planes

▪ 20-25 min simulated approach scenarios
▪ 4-5 aircraft at once, moderate workload (15 aircraft)

3 Pseudo Pilots

(Remote Pilot 

Operators)

Single Air Traffic 

Controller
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Video data collection

Data collection at the TRACON Simulator at Poly campus, ASU

4 Webcams 

installed for 3 

pseudo pilots and 

1 controller
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Preliminary results: facial expression recognition
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Preliminary results: head pose estimation

Baltrusaitis, T., Zadeh, A., Lim, Y. C., & Morency, L. P. (2018). OpenFace 2.0: Facial behavior analysis toolkit. 
Proceedings - 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018, 59–
66. https://doi.org/10.1109/FG.2018.00019 17



Preliminary results: extracted time series data

Pose_Rx: rotation angle along x axis
Pose_Ry: rotation angle along y axis
Pose_Rz: rotation angle along z axis
AU45_r: Eye blink intensity
Expression: Facial expression of the controller
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Preliminary results of time series analysis

• Use rotation angle Roll of head pose as an example
• The black line means the ground truths which are captured by the computer vision module.
• The red line means the predicted value by LSTM. 
• The yellow line presents absolute prediction errors. 
• The arrow indicated the anomaly found by the algorithm.
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Conclusions and future work

Conclusions:
• This paper presents a real-time methodology to identify the anomalous 

behaviors of ATCs using computer vision. 
• This methodology utilized different facial features including head pose, 

eye blink, and facial expression. The researcher demonstrated the 
viability of using LSTM for identification of anomaly in time-series data

Future work
• The researchers will synthesize the anomaly scores from all the 

channels to make the time series analysis more reliable. 
• The researchers will conduct further characterization and quantitative 

assessment of this methodology. 
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Thank you!

NASA University Leadership Initiative
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